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Overview of Themes

1) Classification & Identification – Andrea

2) Speech Synthesis - Christophe

3) Automatic Speech Recognition – Maryam

4) Human Perception and Production – Maryam



Classification & Identification

● Languages, accents & dialects
● A total of 11 papers surveyed (not a lot)
● Various application scenarios, but most work is on 

Language Identification (LID)
● We'll have a look at:

– Feature extraction techniques

– Classification methods

– Corpora

– Results

– What's happening next



● Foreign Accent Detection from Spoken Finnish [5]
● Native British Accent Classification [7]
● Accent Quantification of Indian Speakers of English 

[11]
● Language Identification [1,2,3,4,6,8,9,10]

Classification & Identification -
Application Scenarios



● MFCC → RASTA → CMVN → VTLN → SDC 
● MFCC → Warping X ~ N(0,I) → SDC → Concatenate
● MFCC → Delta → Delta-Delta → CMVN
● Phone lattices and n-grams, absolute (what) and 

relative (where) distance kernels (PARF)
● Phone Log-Likelihood Ratios (PLLR) → PCA
● Phonotactic i-Vectors

Classification & Identification -
Feature Extraction



● i-Vectors – a point estimate of an utterance in variability 
subspace

● Speaker Compensation

– Linear/Semi-supervised/Heteroscedastic/Probabilistic Discriminant 
Analysis

– Neighbourhood Component Analysis

● Binary Genetic Algorithm-based classifier fusions

● Traditional GMM models for supervised phoneme classes

● SVM Kernels

● DARPA RATS ANN on i-vectors

– 3 layers, i-vector input, 6-language posterior output

– 400-700 hidden nodes

● DARPA RATS Adaptive Gaussian Backend

Classification & Identification -
Classification Methods



● FSD (Finnish National Foreign Language Certificate 
Corpus)

● ABI (Accents of the British Isles Corpus)
● Custom Indian Speaker Dataset
● NIST Language Recognition Evaluation (LRE)
● RATS LID Data Corpus (5 targets, 10 non-targets)

Classification & Identification -
Corpora



Corpus Novel Method Baseline

FSD (iVector) 20.01% EER 24.13% EER

ABI (iVector) 81% Accuracy 73.6% Accuracy

LRE (PARF) 19.89% EER (3s test) 23.90% EER (3s test)

LRE (PLLR) 3.21% C
avg 

,1.79% C
avg

3.79% C
avg 

,2.09% C
avg

RATS (iVector-ANN) 6.95% EER 8.99% EER

LRE (Phon. iVector) 19.11% EER (3s test) 22.60% EER (3s test)

RATS (iVector-AGB) 3.6% C
avg 

(30s test) 4.9% C
avg  

(30s test)

●Indian accent strength (like in other languages) can be tied down to 
models of specific phonemes – mostly consonants in Indian. Machine 
performance equalled human listeners.

Classification & Identification -
Results



Take Home Message (1)
● Feature Vector Overview for TRAP Language 

Identification System for RATS Phase II Evaluation



Take Home Message (2)

● Different factor sizes/UBM components/Dim 
Reductions. Classifiers behave differently – Fusion 
gives a big boost (Accents of the British Isles)



Take Home Message (3)

● Stochastic Neighbour Embedding (SNE) Mapping of 
I-vectors (Language Identification System for RATS 
Phase II Evaluation)



Conclusions

● Work is still traditionally split between acoustic-only 
and acoustic-phonetic classification.

● Most of the work is in acoustic-only methods.
● Interspeech 2013 – Capitalize on I-vectors
● Interspeech 2014 – A move towards Artificial Neural 

Networks/Deep Belief Networks instead of/added on to 
current scoring methods?
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Accents & dialects in TTS /
Selected topics

• TTS in various accents / dialects

     Personalisation of speech synthesis (encourages interaction)

• Accent conversion / interpolation

     Computer aided language learning (self reference)

Belongs to more general topics:

• TTS for under-resourced languages 

• Cross-lingual speaker adaptation for TTS



Accents / Challenges for TTS

• Accent types

• Geographical, Sociological, Foreign accent

      may be difficult to define (discrete vs continuum or mixed)

• Accent variation 

• Not just a shift in phonetic realisation

• Change of phonetic inventory

• Phonological variation can spread over segments

• Change of segmental structure (insertion/deletion)

• Intonational variation

      adaptation of the phone models is not enough



Dialects / Challenges for TTS

• Types

• Geographical

• Sociological (sociolects)

Normally seen as discrete 

but may be continuous [Saussure]

• Dialect variation 

• change in lexical and grammatical structure (+ accent variation)

Linguistic knowledge required 

    same situation as under-resourced languages



Scenarios

• TTS in various accents &  dialects

• Fully resourced accent/dialect

• Under-resourced accent/dialect/language

• Accent / Dialect conversion or interpolation

• Accent conversion

• Accent interpolation

• Cross-lingual speaker adaptation



Fully resourced accent/dialect

• HMM-based TTS for Hanoi Vietnamese [Nguyen, 2013]

• NLP module
• Phonetic inventory

• Phonological features

• Lexicon

• G2P and POS Tagger

• Training of HMM-based synthesizer on a dialectal corpus
• VNSpeechCorpus (Hanoi Vietnamese, 630 sentences)

• Advanced Lexicons (Unilex, Combilex) [Richmond, 10]

• Encode different pronnciations based on morphological 
derivation



Under-resourced 
accent/dialect/language

• Learning G2P requires a large training set

Decision-tree based conversion of pronunciations dictionnary 
from one accent to another [Loots, 10]

   

Iterative refinement of G2P system using a small lexicon as 
bootstrap [Goel, 10]  (ASR)

   



Under-resourced 
accent/dialect/language

• Build a TTS system with little or no supervision [Watts,13]

• Unsupervised linguistic representation learned from text
• Vector Space Model used to characterise ‘textual units’

• Letter based speech modeling units instead of phonemes



Under-resourced 
accent/dialect/language

• Build a TTS system with little or no supervision 

• Lightly supervised alignement [Stan, 13]
• Graphem models instead of phone models

• Discriminative training (Maximum Mutual Information)

• Corpus of “found speech” 
• Audiobooks, 14 languages

Performs well if relatively simple 
relation between graphem 
and phonems



Scenarios

• TTS in various accents &  dialects

• Fully resourced accent/dialect

• Under-resourced accent/dialect

• Accent / Dialect conversion or interpolation

• Accent conversion

• Accent interpolation

• Cross-lingual speaker adaptation



Accent conversion

• Voice Morphing strategy 

• Foreign accent removal [Aryal,13]
• Separation of spectral slope and 

spectral fine details

• Spectral details represented by pulse 
density modulation (PDM)

• Interpolation of the PDM 
representations

• Formant-based VTLN [Qian,11]

• Speaker adaptation strategy [Karhila,11]
• Rapid adaptation of accent specific average voices models using 

limited amount of speaker’s data (5 to 15 sentences)



Accent interpolation

• HMM linear interpolation [Astrinaki, 13]
• Clusters of speakers with same accent

• Interpolation between these clusters

• Constrained HMM interpolation

Different interpolation modes [Pucher, 10]

•Simple linear interpolation

•Discrete phonological shifts
• Add a switching rule to control the HMM interpolation

•Segmental structure changes (insertion/deletion)
•  use of null phones which correspond to a phone with zero duration

One-line interpolation since the choice of the interpolation mode 
depend on the context.



Cross-lingual speaker adaptation

(Speaker A, L1)      (Speaker A, L2)  

•Unsupervised state-level mapping [Oura, 10]

• Structural KLD mapping [Toman, 13]
• Modified KLD mapping is dependent of phonological context.

• Used for cross-dialect adaptation.

• KLD mapping between “similar” states 
of average voices models (L1, L2)

• State-dependent transforms are 
generated using the L1 average voice 
model and the speaker data

• These transforms are applied to the 
states of the L2 average voice in order 
to generate the speaker’s model in L2.
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Overview

● Human Perception and Production 
● Automatic Speech Recognition (ASR)



Human Perception & Production

● Cross language effects:
● Effect of L1(native) speech production in L2 (foreign) 

perception
● Effect of L2 speech production in L1 perception

● Effect of accents on human perception
● Multi-lingual/-accent cocktail party



Effect of L1 in L2 perception

● Vowels with particular acoustic properties perceived 
differently according to listener's native language 
(Italian listener-US English vowels) [10]

● Role of L1 phonology in L2 perception [11], [12]
● Vowel devoicing in Japanese carried over to German, 

leading to perceptual difficulties for native German speakers
● Spanish speakers perceiving for two French vowels



Effect of Accent on Human 
Perception (1)

● Interference between perception of regional accent 
and speech disorder [6]

● Disordered speech: weak influence of regional accent on 
perception of speech disorder

● Accented speech: listeners unfamiliar with a regional accent 
may perceive accent differences as a slight speech disorder 
(when none is present)



Effect of Accent on Human 
Perception (2)

● An unfamiliar accent slows down spoken word 
recognition for native and non-native listeners 
(Australian-, Jamaican-, Cockney-accented 
English/eye-tracker experiments) [7,8]

● Category Shifting (CS) differences caused more distraction 
than Category Goodness (CG)

● CG: A2 phones constitute 'deviant' from that of A1
● CS: A2 phones cross A1 phonological boundary



Multi-lingual/-accent cocktail party

● Intelligibility at a multi-accent cocktail party [13]
● More interference when the target and the masker shared 

common dialect features
● More interference when listeners heard their own dialect in the 

masking babble

● Intelligibility at a multi-lingual cocktail party [14]
● Acoustic and linguistic information from babble spoken in a 

known language to the listener competed with the target words
● Whereas for babble produced in unknown languages only 

acoustic information was involved



ASR and Accents/Languages

● ASR research focus at Interspeech 2013 is on Deep 
Belief Networks

● Focus in this talk is on explicit methods to 
accommodate accent



Spoken Dialect is Mixture of Various 
Dialects

● Spoken dialects treated as a mixture of various 
dialects [1]

● Estimation of speaker specific-mixing ratio for 
Japanese dialects

● Simple Counting: Count dialect-specific pronunciations to 
estimate pronunciation dictionary mixture weights

● Topic-modelling: Categorise words into topics with different 
dependencies on dialects (Language Model)

● Topic modelling gives slightly better results



General, accent- and speaker-specific 
Polyphone Decision Trees(PDTs)

● Recognition of South-Asian accented English[2]
● Comparison of WERs for PDTs trained on general, 

SoA and speaker-dependent data
● Comparison of distance between PDTs

● For 'small' PDTs (1k GMMs) SD better that AD better than 
baseline

● Little difference in performance for larger PDTs (3k GMMs), 
despite significant dissimilarity between the trees



Under-resourced / Cross-lingual ASR

● Use of cross-lingual SGMM and Tandem features 
outperforms conventional HMM/GMM-MFCC for 
under-resourced languages [3]

● Improve performance on the target language by 
initializing/training it with a multilingual multilayer 
perceptrons (MLPs) [4]



Training Data Selection

● How can we get the best performance with the 
smallest amount of training data (for example, for 
accented speech)

● iVector-based method for acoustic data selection from 
a large corpus [5]

● Proposed approach outperforms random data set 
selection



● Should we continue research in 
explicit/dialect adaptation?

● Or, will DBNNs solve the problem 
for us?
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