An introduction to Statistical Spoken Dialogue Systems

UK Speech 2013

Presented by Blaise Thomson

Cambridge University Engineering Department brmt2@eng.cam.ac.uk http://mi.eng.cam.ac.uk/~brmt2

Spoken Dialogue Systems – Examples

Cambridge system demo - 01223 852 453

Human-machine spoken dialogue

I want a restaurant

Typical structure of a spoken dialogue system

Human-machine spoken dialogue

Semantic decoding - Intro

Is there um maybe a cheap place in the centre of town please?

- Lots of disfluencies in speech grammars tend to break
- We don't care about the exact meaning
 - We just want to know what the user wants
 - Idea of speech act / dialog act (Austin / Searle / Traum)

Semantic decoding – a simple approach

Is there um maybe a cheap place in the centre of town please?

Semantic decoding – a simple approach

inform (price = cheap, area = centre)

Semantic decoding – a simple approach

- When training we have lots of input vectors x_t and output vectors y_t
- Use your favourite supervised learning algorithm
 - Naïve Bayes
 - Logistic regression
 - Support Vector Machines (Mairesse et al, 2009)
 - Others?
- Act type is multi-class labeling task, others are all just binary

Semantic decoding – a summary

- Words are inputs
 - Convert them to vectors (1/0)
 - Add bigrams / trigrams
 - Confusion network features too! (Henderson et al 2012)
- Act type + slot values are outputs
 - Convert them to vectors (1/0)
- Run your favourite learning algorithm
- In practice may help to post-process a bit

Semantic decoding – Other approaches

- Handcrafted grammars
 Phoenix (Ward et al 1994)
- Hidden Vector State model HMM structure, with hidden stack of concepts He & Young (2005)
- Using Markov Logic Networks Meza-Ruiz (2008)
- Transformation based approach Jurcicek et al (2009)
- Using Combinatory Categorial Grammars (CCG)
 Supervised Zettlemoyer & Collins (2009)
 Unsupervised Artzi & Zettlemoyer (2011)

Output generation

inform(type=restaurant)

I want a restaurant

Output generation - Templates

• To generate natural sentences, many systems use templates

inform(name=\$X, area=\$Y) => "\$X is in the \$Y of town"

inform(name="Char Sue", area=centre) =>
 "Char Sue is in the centre of town"

- Some work has been done on learning the generator
 - Overgenerate and rank (Langkilde & Knight 1998)
 - Bayesian Networks (Mairesse et al 2010)
 - Conditional Random Fields (Dethlefs et al 2013)

Human-machine spoken dialogue

inform(type=restaurant)

I want a restaurant

Dialogue management – what to say?

State model (where are we)

Policy model (what to do)

State model – The traditional approach

State model – The traditional approach

State model – The probabilistic approach

State model – probabilities help

- Tested in the Spoken Dialogue Challenge (2009)
- Provide bus timetables in Pittsburgh
- 800 road names (pairs represent a stop). Required to get place from, to and time

	# Dial	# Succ	% Succ	WER
BASELINE	91	59	64.8 +/- 5.0	42.35
System 2	61	23	37.7 +/- 6.2	60.66
Probabilistic	75	67	89.3 +/- 3.6	32.65
System 4	83	62	74.7 +/- 4.8	34.34

State model – probabilities help

Dialog – what would you do?

1. State tracking

2. Policy decisions

Current approaches

1. State tracking:

- Hand-crafted
- Generative
- Disciriminative

2. Policy decisions:

- Deterministic
 - Hand-crafted via flow-chart
 - Logic representations
- Supervised learning
- Reinforcement learning

Current approaches

1. State tracking:

- Hand-crafted
- Generative
- Disciriminative

2. Policy decisions:

- Deterministic
 - Hand-crafted via flow-chart
 - Logic representations
- Supervised learning
- Reinforcement learning

Generative state tracking

$$\begin{split} p(G|A,O) &= k \sum_{U} p(O,U,G,A) \\ &= k \sum_{U} p(O|U) p(U|G,A) p(G|A) \end{split}$$

Generative state tracking

- Computing joint probabilities is intractable
- Split the goal, G_t, into sub-goals g_{t,c}
- Assume sub-goals are conditionally independent
- e.g. User wants a Chinese restaurant → food=Chinese, type=restaurant

Generative state tracking – summary

- Simplify via Bayesian networks
 - Loopy belief propagation computes the probabilities
 - Expectation propagation computes parameters
- Parameters can be learned unsupervised
- The model can generate
- It is often difficult to include complex dependencies

Discriminative state tracking

- Each slot prediction is a classification task
- Put in whatever features you want

Discriminative state tracking

- One example:
 Deep Neural Network
- Take features from
 previous 9 turns
 + summary of previous
- Designed to generalize well to other domains

Henderson et al. SigDial 2013

Discriminative vs generative – summary

	Gen	Disc
Easily add complex dependencies		\checkmark
Current best performance		\checkmark
Generates for simulation	\checkmark	
Trains from annotations	\checkmark	\checkmark
Currently trains unsupervised	\checkmark	

Reinforcement learning – an example

Reinforcement learning – the idea

Reinforcement learning – the aim

Care about Expected Future Reward, or Q function:

Choose π to maximise $Q^{\pi}(b_0, \pi(b_0))$:

Start State

Reinforcement learning – in practice

In practice, we sample and make approximations

Reinforcement learning – An example

Voicemail – Save message, Delete message or Ask user?

Reinforcement learning – the rewards

Where do we get the rewards?

2. Simulate

3. Estimate

4. Ask+Estimate+Screen

Reinforcement learning – with humans

Reinforcement learning – with humans

	Simulator trained	On-line trained
Evaluation dialogues	400	410
Reward	11.6 +/- 0.4	13.4 +/- 0.3
Success (%)	93.5 +/- 1.2	96.8 +/- 0.9

Gasic et al. ICASSP 2013

Spoken dialogue – current techniques

Actually it's really hard to know when to speak!

Voice Activity Detectors Continuous ASR Reinforcement learn

Tools – Corpora

- ATIS
 - Flight timetables
 - 5000 utterances
- Lets Go DSTC 1
 - Bus timetable domain
 - 15 000 of live dialogs
 - Audio, Annotated text, Annotated fixed goals
- Cambridge Restaurants DSTC 2
 - Restaurant information
 - 6 000 dialogs with mechanical turkers
 - Audio, Annotated text, Annotated semantics, Annotated goals (which can change)
 - 2014 Challenge task

Tools – Software

- Olympus dialog system (Hand-crafted)
 - Dan Bohus http://www.cs.cmu.edu/~dbohus/
 - Desktop-based system
 - C++
- webdialog framework:
 - Matt Henderson bitbucket.org/matthen/webdialog
 - Chrome-based speech recognition
 - Python

Future directions

- Better algorithms:
 - Semantics
 - State tracking
 - Policy learning
 - Generation
- Changing domains
- Open domain systems
- Removing the fixed turn model (incremental dialog)

Thanks – Blaise Thomson

All joint work with Cambridge Dialogue Systems group

Pirros Tsiakoulis

Dongho Kim

Milica Gasic

Jorge Prombonas

Matt Henderson

Catherine Breslin

Martin Szummer

Steve Young